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SUMMARY

Primary implant stability appears to be a prerequisite for successful bone integration of dental
implants. A quantitative method of assessing osseointegration becomes essential for serving as a baseline
and to be able to follow the measurement with time. A recently developed apparatus (Osstell; Integration
Diagnostics AB, Sweden) uses resonance frequency (i.e. tuning fork principle) to determine implant
stability. The use of resonance frequency analysis may provide an objective approach to measuring
initial implant stability by being able to detect changes in micromotion that could be associated with
increase or decrease in degree of osseointegration. Primary implant stability has been reported to be
influenced by the bone quality and quantity, the implant geometry, and the site preparation technique.
The purpose of the study is to test implant stability in relation to implant design (thread geometry and
crest module) using Resonance Frequency Analysis (RFA). The  stabilities of 5 implant designs were
tested after insertion into pig ribs. It was observed that the pig rib demonstrated type1/ 2 bone density.
Following implant placement, the corresponding transducer for each implant design was attached per-
pendicular to the long axis of the pig rib and implant stabilities assessed using resonance frequency
analysis. Different implant designs achieved a similar primary stability in the pig ribs. It may be concluded
that design features aimed at improving primary stability are less important in dense bone.
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INTRODUCTION

Dental implants have become a significant aspect of
tooth replacement in prosthodontic reatment [1, 2, 3]. These
studies, however, have been based on a two-stage sub-
merged surgical protocol, allowing a 3-6 months bone heal-
ing period [1]. Thus within a treatment time frame, implant-
supported prostheses may take up to 7-8 months to com-
plete which, from the patient’ perspective, may be unsatis-
factory.

Consequently, there is a trend towards a one-stage non-
submerged surgical procedure along with an early/ immedi-
ate loading protocol. This is a deviation from the initial crite-
ria of delayed loading established by Brånemark et al [1].

The Brånemark protocol [1] favored a prolonged heal-
ing period, to promote bone growth around the dental im-
plant. Furthermore, it was suggested that premature loading
of the implant, soon after the first-stage surgery, would cre-
ate ‘micromotion’, which could lead to fibrous tissue forma-
tion around the implant, and the subsequent implant loss [4,
5, 6].

Although micromotion has been implicated as a factor
in fibrous tissue formation around an implant [7, 8, 9, 10], it
has been reported that bone growth may also be stimulated
by low frequency micromotion [11, 12]. It now appears that

only ‘’excessive’’ micromotion during healing phase can
cause failure of osseointegration [13, 14, 15]. Their findings
suggest that, a range of micromotion exists, that is tolerable,
is in the order of 50-150 µm [15], and may vary according to
implant design and implant surface topography [16].

 Although evidence based information is available for
late- loading implant protocol, there appears to be no clear
criteria for the application of immediate or early loading of
dental implants. An important aspect for success of early/
immediately loading dental implants may be the primary im-
plant stability in bone at the time of implant placement. The
traditional clinical methods for evaluating bone-implant re-
lationship include radiographic evaluation [17], tapping the
implant with a metallic instrument and assessing the emitted
sound [18], stability measurement with the Periotest instru-
ment [19], and reverse torque application [20].  However,
these methods are rather subjective and do not give a linear
definition of the level of implant stability.

A recently developed apparatus (Osstell; Integration
Diagnostics AB, Sweden) uses resonance frequency (i.e.
tuning fork principle) to determine implant stability. The wave
feed back is interpreted as a numerical value that is linearly
related to the degree of micromotion of the implant. This
device may be able to detect changes in micromotion that
could be associated with increase or decrease in degree of
osseointegration [21]. The use of Resonance Frequency
Analysis (RFA) may provide a possibility to individualize
implant treatment with regards to healing periods, detecting
failing implants, type of prosthetic construction, and if one-
or two-staged procedures should be used [22].  Previous
studies using RFA have reported resonance frequency in
hertz as a parameter to describe implant stability

In a review [23], primary implant stability has been re-
ported to be influenced by the bone quality and quantity,
the implant geometry, and the site preparation technique.
The purpose of the study is to test using Resonance Fre-
quency Analysis (RFA) implant stability in relation to im-
plant design (thread geometry and crest module).
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MATERIALS & METHODS

The study was conducted at the ARK private dental
clinic (Skanstes iela 13, Riga, Latvia). The pig ribs used in
the study were obtained from a retail meat market.

Five different implant designs were chosen for the study
(Table 1, Figure 1).

The Ankylos implant system (Label A) incorporates
the concept of transferring load to the bone through an
asymmetric thread profile that continually increases in the
depth of thread transfers towards the apex of the implant.

 The Astra Tech implant (Label C) incorporates
microthreads on the crest module region of the implant, the
idea being to optimize the load transfer from the implant to
the surrounding bone, thus intending to preserve the mar-
ginal bone. This new design is tested for primary stability
along with their conventional regular threaded design (La-
bel B).

With the Biohorizon implant system (Labels D and E),
the manufacturer alters the thread pitch and depth of the
square thread ultimately aiming to obtain a similar micro-
strain in all bone densities [24].

The initial stabilities of the 5 implant designs were tested
after insertion into ethanol treated [25] pig ribs (Figure 2).
Although calf ribs have been used as the standard in previ-
ous studies, owing to limited access of calf ribs with appro-
priate dimensions, pig ribs were selected as the reference
for this study. The 5 different implant geometries were la-
beled A, B, C, D, E respectively (Table 1, Figure 1). One
implant of each geometry/design was placed according to
the manufacturer’s instructions in a pig rib (5 implants in a
60 mm pig rib). The implants were placed a minimum of 10
mm from each end of the rib and 8 mm from center of one
implant to the other. The bone density of the ribs were as-
sessed by surgeon by drilling a particular sequence of drills
at the end of each rib, and classified as soft, medium, or
dense. (equivalent to Type I/ II (medium-dense), and Type
III/ IV (soft) of Lekholm and Zarb classification [26]; Table
2). Following implant placement, the corresponding trans-
ducer for each implant design was attached perpendicular
to the long axis of the pig rib and secured with a torque of 10
Ncm as per manufacturer instructions (Osstell, Integration
Diagnostics AB, Göteborgsvägen, Sweden) (Figure 3). The
RFA values were then obtained using Osstell (Integration
Diagnostics AB, Göteborgsvägen, Sweden). The data was
analyzed for statistical significance between independent
samples using analysis of variance, and statistical signifi-
cance established at P = 0.05.

RESULTS

 In all, 50 implants were placed in 10 pig ribs. The statis-
tical analysis did not reveal differences in RFA readings
between the various implant systems (Table 3). The diam-
eters and lengths of the various implant systems are de-
scribed in Table 1. However, when the variables of diam-
eters and lengths were not accounted for in the statistical
analysis, BioHorizons D3 implant demonstrated higher av-
erage implant stability (82.6) among the implant systems
measured (Table 4). The averages of other implant systems
in the descending order include Biohorizons D2 implant
(81.3), Astra Tech Fixture Microthread (80.7), Astra Tech
Fixture (77.4) and Ankylos implant (70.9).

DISCUSSION

Primary implant stability is considered to play a funda-
mental role in successful osseointegration [27, 28]. Friberg
et al [28] reported an implant failure rate of 32% for those
implants that showed inadequate initial stability. Ivanoff et
al [29] in a rabbit study investigated the influence of primary
stability on osseointegration by placing titanium implants
so that some were primarily stable, some showed rotational
mobility, and some were totally mobile. They found that
although all the implants osseointegrated, on removal, dem-
onstrated significantly less bone around those implants with
initial total mobility. Thus it appears that high primary sta-
bility reduces the risk of micromotion and adverse tissue
responses such as fibrous tissue formation at the bone-
implant interface during healing and loading. Primary im-
plant stability is now generally accepted as an essential
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Table 1. Description of implants used in the study.  
 

Implant System Description Diameter 
(mm) 

Length 
(mm) 

Number of 
implants Label 

Ankylos Implant system  
(Friadent, Mannheim, Germany) Type ‘A’ 3.5 11 10 A 

Astra Tech Implant system  
(Astra Tech, Mölndal, Sweden) Microthread 4 11 10 B 

Astra Tech Implant system  
(Astra Tech, Mölndal, Sweden) Regular thread 4 11 10 C 

BioHorizons Implant system (Maestro, Biohorizons 
Implant Systems, Birmingham, AL , North America) 

D2 thread 
configuration 4 12 10 D 

Biohorizons Implant system (Maestro, Biohorizons 
Implant Systems, Birmingham, AL , North America) 

D3 thread 
configuration 4 12 10 E 

 

Table 2. Bone quality classification proposed by Lekholm and 
Zarb (1985). 

 

Type 1 Homogenous compact bone 

Type 2 Thick layer of compact bone surrounding a core 
of dense trabecular bone 

Type 3 Thin layer of cortical bone surrounding a core of 
dense trabecular bone 

Type 4 Thin layer of cortical bone surrounding a core of 
low-density trabecular bone 
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criterion for obtaining osseointegration. By means of RFA,
initial implant stability can be quantitatively assessed and
followed with time as a function of implant’s stiffness in
bone. Initial implant stability is suggested to be influenced
by the bone quality and quantity, the implant design and
the surgical technique used. As bone quality and quantity
are set factors, primary implant stability may be influenced
by the implant design and surgical technique.

The RFA did not reveal statistically significant differ-
ences between the different implant designs. This may be
explained by the dense bone quality in the pig bone mea-
sured. The surgeon’s assessment of bone density in gen-
eral was medium-dense bone (equivalent to Type 1/ 2 of
Lekholm and Zarb classification; Table 2). It is known from
previous research in cadaver bone that differences between
different implant designs are more pronounced in Type 4
bone [30]. The authors compared 5 different implant de-

L.Vidyasagar et al CLINICAL ARTICLES

Table 3. Analysis of variance taking variables of implant diameter and implant 
lengths into account (df = degree of freedom; MS =  Variance; F = Fisher’s ratio; 
P= Statistical significance; F crit = Critical value of Fisher’s ratio). 
 

Implant 
labels A B C D E 

1 65 81 74 71 78 
2 73 85 72 77 74 
3 60 72 59 75 78 
4 69 74 71 82 80 
5 68 79 85 84 86 
6 71 82 80 79 79 
7 68 69 61 72 79 
8 75 93 89 97 94 
9 79 90 93 92 94 
10 81 82 90 84 84 

Implant 
labels A B C D E 

1 1,58 1,84 1,68 1,48 1,63 
2 1,77 1,93 1,64 1,60 1,54 
3 1,45 1,64 1,34 1,56 1,63 
4 1,67 1,68 1,61 1,71 1,67 
5 1,65 1,80 1,93 1,75 1,79 
6 1,72 1,86 1,82 1,65 1,65 
7 1,65 1,57 1,39 1,50 1,65 
8 1,82 2,11 2,02 2,02 1,96 
9 1,92 2,05 2,11 1,92 1,96 
10 1,96 1,86 2,05 1,75 1,75 

 
Anova: Single Factor 
SUMMARY 

Groups Count Sum Average Variance 
A 10 17,18788 1,718788 0,023697 
B 10 18,34091 1,834091 0,02985 
C 10 17,59091 1,759091 0,074059 
D 10 16,9375 1,69375 0,030483 
E 10 17,20833 1,720833 0,02037 

 
ANOVA 
Source of Variation SS df MS F P-value F crit 

Between Groups 0,120329 4 0,030082 0,842835 0,505446 2,578737 
Within Groups 1,606132 45 0,035692    

Total 1,726462 49     
p<0,05 
 

signs in a human cadaver model and found no major differ-
ences in Type 2 bone, while significant differences in pri-
mary stability were observed in low density bone. Similar
results were reported by Rompen et al [31], where the initial
stability between 2 different designs was compared in the
dog mandible using RFA. The authors concluded that the
benefits of using the Mk IV implant (Nobel Biocare AB,
Gothenburg AB, Sweden) were not detected in dense bone.
Glauser et al [32] in a clinical study inserted various
Brånemark System implant designs in bone assessed as
quality 3. Mk IV implants exhibited significantly higher in-
sertion torques and resonance frequencies than Mk II and
Mk III implants. It may therefore be speculated that differ-
ent implant designs may result in improved primary stability
and survival in soft bone by achieving and maintaining good
stability during the remodeling of the trabecular network to
more dense bone.
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When the implant diameters and lengths were not cor-
rected for in the statistical analysis, the D3 Biohorizon im-
plant exhibited higher average implant stability than other
implant designs measured. In comparison with the Ankylos
and Astra Tech implants (Labels A, B, C), the D 3 Biohorizon
implant was wider and longer, thus plausibly suggesting a
role of implant diameter and implant length in attaining ini-
tial stability. However, as reported in the pilot study by
Bailleri et al [33], a comparison of implant stability readings
failed to demonstrate a direct relationship between implant
length and primary stability. Their results indicated that a
short implant could be as stable as a long one.  It may be
that the differences observed in this study between the D3
Biohorizon (Label E) and Ankylos (Label A) implant sys-
tems, were more related to different implant diameters.
Glauser et al [32] in a clinical study, compared insertion torque
at various site depths when placing Mk IV (Nobel Biocare
AB, Gothenburg AB, Sweden) in Type 3 bone. They found
implants inserted in 3 mm diameter sites to demonstrate sig-
nificantly higher torque values. It has been suggested that
incorporating wider diameter implants may increase the bone-

metal contact area by connection to the cortical bone enve-
lope [34].

However, this may not justify the differences observed
between D2 and the D3 implant designs (Labels D and E),
both implants being of identical lengths and diameters. The
surgeon designated a slightly lesser bone density for 2 of
the 10 ribs used in the study, which may explain the differ-
ence in results between D3 and D2 Biohorizon (Labels E and
D) and between D3 and Astra Tech implants (Labels E and
B, C).

CONCLUSION

It was observed that the different implant designs
achieved a similar primary stability in the pig ribs that were
of a type 1-2 bone quality, as measured by RFA. It may be
concluded that design features aimed at improving primary
stability are less important in dense bone.

Further comparative studies may be necessary to evalu-
ate the influence of different implant diameters and different
implant designs in softer bone qualities.

Table 4: Analysis of variance not taking the different diameters and lengths into account. 
 

Anova: S ingle Factor 
SUMMARY 
 

Groups Count Sum Average Variance 
A 10 709 70,9 40,32222 
B 10 807 80,7 57,78889 
C 10 774 77,4 143,3778 
D 10 813 81,3 70,23333 
E 10 826 82,6 46,93333 

 
ANOVA 

Source of Variation SS Df MS F P-value F crit 
Between Groups 884,28 4 221,07 3,081926 0,02514 2,578737 
Within Groups 3227,9 45 71,73111    
Total 4112,18 49         
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