SUMMARY

Aim of study was complex detection of appearance and distribution of growth factors, facial bone growth stimulating genes, ground substance proteins and apoptosis in bone of ankylotic TMJ in primary and repeatedly operated children.

Materials and Methods. Ankylotic tissue was obtained during the arthroplastic surgery from two 6 years old children (boy and girl) with osseous type of disease. The girl underwent the repeated surgery in TMJ due to the same diagnosis in age of 12 years. Ankylotic tissue was proceeded for detection of BMP2/4, TGFβ, Msx2, osteopontin, osteocalcin immunohistochemically, and apoptosis.

Results demonstrated massive bone formation intermixed by neochondrogenesis, the lack of BMP 2/4, but abundant number of TGFβ-containing cells in bone of all tested cases. Despite rich osteopontin positive structures in bone obtained from both – primary and repeated surgery, osteocalcin demonstrated variable appearance in 6 years aged children, but was abundant in joint 5 years later during disease recurrence. Expression of Msx2 varied widely before, but with tendency to decrease stabilized until few positive cells in bone of 12 years old girl. Apoptosis practically was not detected in primarily operated TMJ, but massively affected the supportive tissue in girl with recurrent ankylosis.

Conclusions. The lack of BMP2/4 expression in ankylotic bone proves the disorders in cellular differentiation with simultaneous compensatory intensification of cellular proliferation and/or growth by rich expression of TGFβ leading to the remodelling of TMJ.

Mainly rich distribution of osteocalcin and osteopontin indicate the intensive mineralization processes of ankylotic bone.

Persistent Msx2 expression is characteristic for the supportive tissue of recurrent ankylosis of TMJ and indicates the persistent stimulation of bone growth compensatory limited by massive increase of programmed cell death.

Key words: growth factors, osteopontin, osteonectin, apoptosis, temporomandibular joint, children.

INTRODUCTION

The ankylosis or hypomobility of temporomandibular joint (TMJ) is of multifactorial aetiology, interferes with the growth of affected condyle and further fusion of it and the glenoid cavity and skull base [1, 2]. Additionally, there are some variations in ossification of the TMJ and surrounding tissue that not always could be operated and/or followed up [3]. Main morphological changes enrolled chondroid hyperplasia [4] and transformation of the cartilage cells into osteocytes [5]. However, patomorphology of ankylosis is not unite and also displays different aspects. Progressive ankylosis gene (ank) which regulates the osteoblast differentiation is discovered lately [6]. Mice models demonstrated also involvement of deficiency of Indian hedgehog in disregulation of some growth factors and the same growth of TMJ,
leading to condylar disorganization [7] and Shox2 [8] that plays a role in expression of osteogenic genes. Also hydrostatic pressure is mentioned among significant mechanical forces as a regulator of functions in supportive tissue and even expression of different growth factors [9]. Despite of the above mentioned it is not clear whether there are correlations between the influence of complex genes/growth factors/supportive tissue proteins and between recurrence of ankylosis in TMJ in long period of time. Also such molecular event as programmed cell death that is described to play an important role in TMJ during local tissue reduction [10] and inflammatory diseases [11], is not characterized in ankylotic tissue of this region at all. Thus, our aim was complex detection of appearance and distribution of growth factors, facial bone growth stimulating genes, ground substance proteins and apoptosis in bone of ankylotic TMJ in primary and repeatedly operated children.

MATERIALS AND METHODS

Ankylotic tissue was obtained during the primary arthroplastic surgery from two 6 years old (one girl and one boy) old children (Figures 1-3) with osseous type of disease. Despite the rib bone/cartilage autotransplantation in TMJ the girl underwent the repeated surgery due to the recurrence of disease in age of 12. The resected tissues (Fig. 4) of both – primary and secondary surgeries were fixed in Stefanini’s solution and after decalcified into “Decalcifer, rapid” (I.T. Baker company, code ITB RS 155800054, The Netherland) solution for 24 hours. Then tissues were dehidrated through a graded series of ethanol, embedded in paraffin, and sectioned into 5 μm thick slices.

For bone fragments of each case general morphological evaluation, routine staining with haematoxylin and eosin was performed. For immunohistochemistry (IH) antibodies against: bone morphogenetic protein 2/4 (BMP 2/4, working dilution 1:100, R and D systems, UK), osteocalcin (working dilution 1:100, Abcam, UK), osteopontin (working dilution 1:100, Abcam, UK), transforming growth factor beta (TGFβ, working dilution 1:1000, Cambridge Science Park, UK); homeobox-containing transcription factor muscle segment homeobox 2 (Msx2, mouse, 1: 250, Abcam, UK) were

For bone fragments of each case general morphological evaluation, routine staining with haematoxylin and eosin was performed. For immunohistochemistry (IH) antibodies against: bone morphogenetic protein 2/4 (BMP 2/4, working dilution 1:100, R and D systems, UK), osteocalcin (working dilution 1:100, Abcam, UK), osteopontin (working dilution 1:100, Abcam, UK), transforming growth factor beta (TGFβ, working dilution 1:1000, Cambridge Science Park, UK); homeobox-containing transcription factor muscle segment homeobox 2 (Msx2, mouse, 1: 250, Abcam, UK) were

Table. Semiquantitative evaluation of relative appearance in growth factors, genes, bone proteins and apoptosis in TMJ ankylotic bone before and after its reconstruction

<table>
<thead>
<tr>
<th>Factors/ /TMJ</th>
<th>TGFβ</th>
<th>BMP 2/4</th>
<th>Mss2</th>
<th>Osteopontin</th>
<th>Osteocalcin</th>
<th>TUNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary surgery cases n=2 (6 years old boy and 6 years old girl)</td>
<td>++++</td>
<td>–</td>
<td>0/++++</td>
<td>+++</td>
<td>++++</td>
<td>0/+</td>
</tr>
<tr>
<td>Repeated surgery case n=1 (12 years old girl, the same as above)</td>
<td>++++</td>
<td>–</td>
<td>+</td>
<td>+++</td>
<td>++++</td>
<td>++++</td>
</tr>
</tbody>
</table>

TMJ – temporomandibular joint; TGFβ – transforming growth factor beta; BMP 2/4 – bone morphogenetic protein 2/4; Mss2 – homeobox-containing transcription factor muscle segment homeobox 2; TUNEL – terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labelling; 0/+ – occasional positive structures seen in visual field; + – few immunoreactive structures seen in visual field; +++ – numerous immunoreactive structures seen in visual field; ++++ – abundance of immunoreactive structures seen in visual field.
performed IMH by using of standard Dako EnVision and RD Systems kits. IHC labelling was achieved using the standard streptavidin and biotin method [12, 13]. To evaluate IHC reaction, semiquantitative method was used. Scale was as following: "0" – no positive structures found in visual field, "0/+" – occasional positive structures seen in visual field, "+/" – few immunoreactive structures seen in visual field, "++" – moderate number of immunoreactive structures seen in visual field, "+++" – numerous immunoreactive structures seen in visual field, and "++++" – abundance of immunoreactive structures seen in visual field. For apoptosis detection, terminal deoxynucleotidyl transferase-mediated deoxyuridine-triphosphate nick end-labelling (TUNEL) using in situ cell death detection kit (Roche Applied Science, Penzberg, Germany) was performed [14].

RESULTS

Expression of different factors was similar in bone obtained from primary TMJ surgeries in both children – 6 years old girl and boy. Thus these data are described together in Table 1. Separately Table shows also semiquantitative evaluation of relative appearance in different factors of bone from girl who underwent the repeated surgery in age of 12 years on TMJ.

Routine review pictures demonstrated massive compact bone formation mixed by neochondrogenesis in resected bone fragments of children from both cases – primary and secondary surgery. Bone showed mainly osteocytes and a narrow proliferation zone was detected only fragmentally. Prominent connective tissue ingrowths with sclerotic blood vessels separated bone fragments in ankylotic tissue of all primary and repeatedly operated cases (Fig. 5-6).

TGFβ was richly secreted by osteocytes in bone obtained from all cases of primary surgery (Fig. 7) and also in bone of girl who underwent the repeated surgery in 5 years due to the disease recurrence (Fig. 8).

BMP2/4 was absent at all, but osteopontin - abundant in supportive tissue cells of primarily and repeatedly operated patient.
Fig. 10. Numerous osteocalcin immunoreactive cells in ankylotic bone of 12 years old girl 5 years after first bone/cartilage reconstruction surgery. Osteocalcin IMH, ×240.

Fig. 11. Bone regions with moderate number of Msx2-containing cells in TMJ of 6 years old child. Msx2 IMH, ×240.

Fig. 12. Few Msx2 positive cells in neochondrogenesis region of 6 year old child with ankylotic TMJ. Msx2 IMH, ×240.

Osteocalcin demonstrated variable appearance of positive cells that often was of focal character in TMJ of primarily resected bone cases (Fig. 9). However, more intensive patchy expression of osteocalcin-containing cells was seen in the TMJ bone of 12 years old child with recurrence of disease (Fig. 10).

Inhomogeneous Msx2 distribution affected mainly ankylotic bone and cartilage before the TMJ reconstruction (Figs. 11, 12), but expression of this gene decreases until the few positive cells in the visual field in case of disease recurrence (Fig. 13).

There were few apoptotic cells observed in ankylotic bone obtained from primary surgeries (Fig. 14). However, apoptosis massively affected the bone after autotransplantation (Fig. 15).

DISCUSSION

We found various (from indistinct up to the abundant) Msx2-containing cells distribution in ankylotic bone that was slightly stabilized until few positive cells in case of disease recurrence in 5 years. Also group from Japan discovered connection between the Msx2 gene and ankylotic diseasaeas (ankylotic spondylitis) in population [15]. Msx2 is one of the strongest facial bone inducer and mainly influences mesenchymal cells. The last ones differentiate into chondrogenic, osteogenic, and fibrogenic cells. Interestingly, that Msx2 expression differs in different sites of calvarium and is more intensive in perichondrium of skull basis [16]. Taking in account the presence of mixed regions of chondrogenesis and osteogenesis in ankylotic bone of our patients and the described fact that both – hereditary and also mechanical modulations (changed hydrostatic pressure, for example), of growth and development share a common pathway via genes [17] we speculate on the strong persistant Msx2 growth stimulating role in ankylosis. In such a way Msx2 should be added to those genes that are described to be involved in the pathogenesis of ankylotic supportive tissue forming. So, Indian hedgehog modulates embryonic mandibular condylar growth and its deficiency raises growth retardation and decreases cell proliferation [7]. Also importance of FGF, TGFβ, sclerosin,
expression, for instance, to bcl-2 expression, and
ation. Apoptosis usually correlates to the distinct gene
abundance of cells in programmed cell death condi-
tions, while the recurrent ankylotic tissue demonstrated
bone obtained during primary arthroplastical surger-
y of ank gene expression [23].

in the bone of experimental animals in association
of spontaneous non-uniform mineralization regions
pontin expression as it is known to raise appearance
eralization aspect. This is proved also by rich osteo-
calcin expression which is known to modulate bone metabolism [22] in min-
eralization aspect. This is proved also by rich osteo-
pontin expression as it is known to raise appearance
of spontaneous non-uniform mineralization regions
in the bone of experimental animals in association
of ank gene expression [23].

Additionally, the ankylotic bone of our patients
more displays mineralization process due to the
abundant increase of osteocalcin expression which
is known to modulate bone metabolism [22] in min-
eralization aspect. This is proved also by rich osteo-
pontin expression as it is known to raise appearance
of spontaneous non-uniform mineralization regions
in the bone of experimental animals in association
of ank gene expression [23].

Apoptosis was seen in rare cells of ankylotic
bone obtained during primary arthroplastical surger-
ies, while the recurrent ankylotic tissue demonstrated
abundance of cells in programmed cell death condition.
Apoptosis usually correlates to the distinct gene
expression, for instance, to bcl-2 expression, and
this combination is explained as stimulated survey
of proliferative and prehypertrophic chondrocytes
[24]. In absence of regeneration-stimulating growth
factors (BMP 2/4), when mainly unhomogenously
mineralized bone develops, possibly the apoptosis
mechanism is that what compensates the common
massive inqualitative bone remodellation in TMJ
and its region.

CONCLUSIONS

The lack of BMP2/4 expression in ankylotic bone
proves the disorders in cellular (more likely
osteoblasts) differentiation with simultaneous com-
 pensatory intensification of cellular proliferation
and/or growth by rich expression of TGFβ leading
to the remodelling of TMJ.

Mainly rich distribution of osteocalcin and
osteopontin indicate the intensive mineralization
processes of ankylotic bone.

Persistent Msx2 expression is characteristic
for the supportive tissue of recurrent ankylosis of
TMJ and indicates the persistent stimulation of
bone growth compensatory limited by massive increase
of programmed cell death.

ACKNOWLEDGEMENTS

This work has been partly supported by the Eu-
 ropean Social Fund within the project “Multidi-
siplinary Research in Biomaterials Technology of New
Scientist Group”, No.2009/0199/1DP/1.1.1.2.0/09/
APIA/VIAA/090.

Received: 21 10 2010
Accepted for publishing: 23 09 2011